Monday, June 21, 2021

Fintech Use Case for Graph Analytics



In my previous blog, I had written about high-level use cases for Graph Analytics. In today’s blog, lets' dive in deeper and take a look at how Fintech companies can use graph analytics to allocate credit to customers & manage risks.

Today, banks and other Fintech companies have access to tonnes of information – but their current databases and IT solutions do not have the ability to make the best use of it. Customer information such as KYC data, and other demographic data are often storied in traditional RDBMS database, while transactional data is stored in a separate database, customer interactions on web/mobile apps, customer interactions data are stored in Big Data HDFS stores, while the data from Social network or other network data about customers are often not even used. 

This is where graph databases such as Neo4J or Oracle Autonomous database etc come into play.  

A graph database can connect the dots between different sources of information and one can build a really cool, intelligent AI solution to make predictions on future purchases, credit needs, and risks. Prediction data can then be validated with actual transactional data to iterate and build better models. 

Graph databases are essentially built for high scalability and performance. There are several open-source algorithms and libraries that can detect components and make connections within the data, you can evaluate these connections and start making predictions, which over time will only get better. 

No comments: